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Abstract. The paper studies the problem of tracking a target robot by an
observer robot. The strategy of the target robot is not known in advance. The
observer robot will try to learn the target’s robot strategy by keeping a model
about the target robot behaviour. This will be done by modelling the tracking
problem as a repeated two player game, where the robots objective is to look for
strategies that maximizes their expected sum of rewards in the game. We make
the assumption that the robot motion strategies can be modelled as a finite
automata. First we suppose that they behave competitively and theh we relax
this constraint to explore the case of a more general kind of interaction between
the target and the observer.

1 Introduction

Many applications require continuous monitoring of a moving farget as is the case of
movie filming of moving actors whose motions are not known in advance and is
necessary to keep inside the scope of the camera the actions of the main character.
Other application can be the virtual presence for trying to keep track remotely of some
moving objects as vehicles, people, etc. Another application of robot tracking can be
the automated surveillance of museums where there can be a robot that follows a
guest from the beginning of his visit till he leaves the museum. In the last few years
many research efforts have been done in the design and construction of efficient
algorithms for reconstructing unknown robotic environments [12][13][14][15] and apply
learning algorithms for this end [12][13] . When we are looking for efficient interaction
strategies we have to take into account the reward obtained for the actions executed in
that moment as well as the consequences of the taken actions on the future behaviour
of the other entities. This task can become very hard given that the effectiveness of
the interaction strategy depends on the strategies of the other agents. The problem is
that the strategies of the other agents are private. For dealing with these problems it is
necessary to provide the agents with the capability to adapt their strategies based on
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their interaction history. This implies that we have to endow the agents with learning
capabilities. In the near past there have been written many excellent articles on
learning models of intelligent agents as those claborated by David Carmel & Shaul
Markovitch [1] [2]. In the field of Multi-agent Systems there have been written
excellent papers about Markov games as a framework for multi-agent reinforcement
learning (M.L. Littman [6)). In the field of robot motion planning there has been
published very interesting papers about the problem of calculating motion strategies
for maintaining visibility in space cluttered by obstacles, of a moving target whose
movements were partially predictable and where the movements of the target robot as
well as the observer robot have uncertainties. One of the main concerns on robot
tracking is to keep the visibility of the target robot by maintaining the target on the
scope of the cone of the visual sensor of the observer robot (S. La Valle et al [4] [5]).
Another very important concern that can be found in many papers on robot tracking is
to keep the visibility in real time of the target robot whose behaviour is unpredictable
by using a reactive planner (R. Murrieta et al [7]). These last to papers [4] [5] and (7]
will be the starting point of the present paper where we will propose some extensions
under the focus of interest of game theory. In [4] [5] and [7] they make the
assumption that the strategy of the target robot is to evade the observer robot and
based on that they propose geometrical and probabilistic solutions of the tracking
problem which consists on trying to maximize, by the observer, the minimal distance
of escape of the farget. We feel that the solution lacks at least in two aspects. First the
target don’t interact with the observer so there is no evidence that the strategy will try
to escape if it doesn’t knows what are the actions taken by the observer. The second
aspect is that even if there can take place some sort of interaction between the rarget
and the observer, the target is not necessarily following an evasion strategy so this
may produce a failure on the tracking task.

In Section 2 we retake the formulation given in [5] and we will make some
remarks about the limitations of this approach. In section 3 we will provide a precise
formulation of the problem in terms of strategies in game theory and present a
modelling of the tracking problem as a repeated two game player. In Section 4 we
present some concluding remarks and future works to be done by us.

2 Formulation of the Tracking Problem as a Robot Motion
Planning Problem

The problem can be posed in a worst case situation where the target robot try to evade
the observer robot. Under this assumption the main goal of the strategy of the
observer robot or pursuer will be to guarantee that the target robot or evader will be
found for all possible motions. We can initially assume that the pursuer is equipped
with vision or range sensing and that both robots are modelled as 2D points so each
robot has a configuration space of dimension 2. This is a generalization of the
evasion-pursuit that have been studied and formalized as a general decision problem
where two agents have diametrically opposed interests. So the pursuer and the evader
are modelled as points on the plane that is a bounded 2D Euclidean space cluttered by
polygonal obstacles such that the task of keeping in a visibility cone the evader makes
the problem become harder and by consequence, more appealing from the standpoint
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of motion planning. We will start with some definitions given in [5] [4] and [7] for
the sake of clarity and the purpose of giving context to our work. In [S] are
formulated two interesting research questions 1) What bounds can be established on
the number of pursuers needed to solve the problem in terms of geometrical and
topological complexity of the free space ? and 2) can a successful solution strategy be
efficiently calculated for a given problem ? . We will try to give an answer to the
second question from a game theory point of view and show that we can extend the
scope of [4] using this formalism to more general target strategies than the evasion

strategy. The problem of tracking have been defined in [5] as follows. Let F denote
the closure of the collision free space. All pursuer and evader positions must lie in

F . Let e(t)e F be the evader position at time #>0. It is assumed that
e:[0,00) — F is a continuous function, that the evader can execute arbitrarily fast
motions and that the initial evader position e(0) and path e are not known by the
pursuers. In our case we will deal with only one pursuer. Let ¥(t) the position of the
pursuer at time ¢ >0 and y:[0,00) & F a continuous function representing his
strategy. For any point g € F let V' (g) be the set of all point (i.e. linear segments
joining ¢ and any point in ¥ (g) lies in F'). A strategy ¥ is considered as a solution
strategy if for any e:[0,00) = F there exist a time € [0,00)such that

e(t) e V(y(t)). That means that the evader will eventually be see by the pursuer

regardless its path. Given that the evader’s position is unknown, one don’t have
access to the state at a given time, and that motivates the use the notion of information
space that identifies all unique situations that can occur during motion strategies. In
[4] are studied the motion strategies for maintaining visibility of a moving target. In
this paper it is studied the problem of maintaining the visibility of the target with a
camera mounted in an observer robot as motion planning problem, and assumed the
following conditions 1) an observer nust maintain visibility of a moving target; 2) the
workspace contains static obstacles that prohibit certain configurations of both the
observer and target; 3) the workspace also contains static obstacles that occlude the
target from the observer; 4) a (possibly partial) model is known for the target. In [4]
they formulate the problem of one pursuer and one evader in the combined

configuration space X = Cj,, x CJ,, . They use a discrete time representation for

facilitating the expressions of the uncertainty of the target for instance k is an index
that refers to the time step that occurs at (k —1)A?, and At is a fixed sampling rate.

The observer is controlled through actions #, from some space of actions U . The
discrete time trajectory of the observer and the target were given by the transition
equations gf,, = f°(q¢,u,) and g, = f'(q;,0,) respectively where 6,
represents the unknown actions of the farget from a space of actions ® . In the case

of a predictable target the transition equations is simply q;,, = f (g, ). Together

f° and f' (define a state transiton equation of the form
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X, = f(x,,u,,6,) where the state X, represents the pair of configurations

q: and q,'(. The visibility can be defined in many ways as for instance ap
omnidirectional field of view or as a fixed cone, etc. but in a more general setting it
can be defined in terms of a binary relation between a visibility subspace and the
space of states or more formally as X, C X . Based on that the state trajectories can
be evaluated in such a way that the observer’s goal is to stay in a state belonging to
X ,- This control of the trajectory can be performed by applying a cost to the
sequence of control inputs as follows:

K
Bltims K psthy s sl ) = Zlk (x,,u, )+ Ly, (xg,,) where K represents
k=1
the time increment for issuing a action and
I,(x,,u,)={0 if x, € X, ;| otherwise}is a loss accumulated in a single time
step with which enable to measure the amount of time that the farget is not visible and
evaluate a given trajectory. If the movements of the target are predictable this means

that g, is known Vk € {l,...,K +1} and the transition equation is simplified to
X, = f(x,,u,)and as consequence the state trajectory {X,,...,Xx,,}can be

know if once we know X, and the inputs {#,,...,4, }. So for problems that don’t

involve the optimization of the robot trajectory, the motions of the observer robot can
be computed by a recursive calculation of the visibility and reachability sets from
stage K down to stage 1, or telling it in words, by back-chaining. Besides that the
loss functional can be minimized by dynamic programming using the relationship

between the cost-to-go functions L, = min{/, (x,,u,)+ L, (x,,,)}and this can
Uy

be utilized iteratively for calculating the optimal actions. The visibility polygon using
omnidirectional visibility can be calculated in O(nlgn) using standard sweep

algorithms. Another very interesting case appears when the farget is partially
predictable in the sense that it is know the velocity bound of the target in which case
the dynamic programming method can be used to determine optimal strategies, but
even for the very simple planar space the dimension becomes four. Due to this growth
of complexity it have to be used alternative approaches that make a tradeoff between
computational cost and quality of the solutions obtained. So the notions of optimal
strategy become more interesting due to the fact about the uncertainty on the

prediction of the farget movements calculated as g,,, = f'(g;,6,) where

6, € Oare the unknown actions. These unknown actions can be modeled in two

ways. The fisrt as nondeterministic uncertainty and the second as probabilistic
uncertainty. In first case one design the observer strategy that performs the best given

the worst-case choices for 6, . In the second case it can be assumed p(6), ) where

P(-) denotes a probability density function, and in that case the designed strategy of
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the observer willl try to minimige the expected loss. Due to the unpredictability of the
rarget strategy, it has to be designed an observer state-feedback strategy that respond

to on-line changes. Let 7y, :X —Udenote the strategy at stage k

(715 Vasres ¥ } the strategy, and T the space of possible strategies. For the case of
nondeterministic uncertainty, a strategy , can be selected that yields the smallest

worst-case  loss:  L(x,,7") = 1,nlf: L(x,,y)= ing sup L(x,,7,7°) for all
€ rel Locro

6 :
X, € X, and ¥’ represents a choice of 0, forevery stage. The strategy obtained by

this method guarantee the least possible loss given the worst-case action of nature.
Using this formalism it can be proposed as strategy to maximize the probability of
future visibility over the next msteps but the computational cost increases
dramatically as a function of m . Because of that, in practice, the number of steps is

limited to the case m =1and select the action U, that maximize the probability that

the target stay in the scope of the observer at the stage k +1. As a extension of the
preceding approach in [7] R. Murrieta et al. use nondeterministic uncertainty and
worst-case analysis for trying to solve the tracking problem for obtaining the observer
strategy by maximizing the minimal distance to escape of the farget, that is the
shortest distance the target needs to move in order to escape the observer’s visibility
region. In this work they implement a reactive planner, that means a short term
planner. They do that because of the need of a rapid response time that a normal
planner cannot give. Due to the limitations of the vision sensing they introduce the
notion of view frustrum or angular field of view. That is defined in terms of edges that

borders either an obstacle , denoted as F £ OF free space, denoted as E e The free

edge of the visibility region ¥ (q) nearest to the target is denoted as E},. To
maximize the distance between the target and the boundary of the visibility region of
the observer it is necessary to compute de distance between q," and E}, which is

denoted Dq, , g - For obtaining it the distance among g, and every edge of V(q)
v Eg

must be calculated, and it can be easily done using Euclidean metric when when the

E s is visible from the observer position, otherwise it is used a geodesic metric. So

’

the distance between g, and each free edge in ¥'(q) is the solution to the equation
. =mi where V_are the vertex in the
q‘/[g,’ mln(v",v,){Dq;/vu +Dvulv/ +DV,IEI,} h [

targets s visibility region, and v , is any vertex in ¥ (q) that sees the free edge E , .
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2.1 Some Limitations of the Precedent Approach

The work done in [4] and [7] was very interesting but is limited to the case where the
target robot is assumed to follow an evading strategy. That is due to the. worst-case
approach and the fact they were concerned to solve the tracking probler_n in real time
tacking in account the uncertainty on the behaviour of a partially predictable rarge.
The evasion strategy behaviour assumption is a very natural one but this entails the
interaction between the target and the observer in such a way that the evader could
take the best decision for evading the observer. This was completely ignored in [4],
[5] and [7]. Lets give an schematic example. In the following image we denote with
T and O the farget and observer respectively. The black boxes represent obstacles in
2D and the arrow represents the movement decision taken by T. If T is following an
evasion strategy it will try to minimize his distance to escape and O will try to
maximize the minimal distance to escape of T.

—D

.8)

In the case that T is not trying to evade O it can moves as it is shown in the following

image.

. @

If O is trying to maximize the minimal distance to escape of T it can lose the tracking.
Another aspect that has not been considered in [4], [5] and [7] was the case where the
target behaviour be different from the evasion one. In that case the actions or
strategies calculated by the observer such that the farget remains on the visibility
region of the observer may fail if the actions of the target were to move to a position
out of the visibility region and not necessarily to one related with the shortest
distance to escape. Because of the reasons exposed above we propose as an extension
of the precedent work done in [4], [5] and [7] to endow the farget and the observer
with a learning capacity in such a way that the observer can predict the behaviour of
the rarget in a case different from the evasion strategy assumed in [4], [5] and [7].
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3 Stating the Tracking Problem as a Repeated Game

One of our objections in way that the tracking problem has been formulated in [4], [5] and [7]
was that it does not .consider the fact that if the rarget is going to have an evasion behaviour it
must take place an interaction between the farget and observer such that the first can observe
the second and.takc the best decision for an evader. It is well known that searching for an
optimal interactive strategy is a hard problem because it depends on the behaviour of the others.
Given that the agents involved in an interaction are autonomous their strategies are private, as
is the case of the observer and the farget. For dealing with this problem we propose to end'ow
the interacting agents with a learning ability such that they can adapt their behaviours or
strategies based on their interaction experience. We propose to use model-based approach for
learning an efficient interactive strategy between the observer and the farget inspired on what
has been proposed in [1]. The agents keep a model of the opponent’s strategy that is modified
or adapted during the interaction, exploiting the current model to predict the other’s behaviour
and choose its own action according to the prediction. In case of failure in the prediction the
agent updates the opponent’s model to make it consistent with the new information. This
approach give rise to two important questions 1) given a model of another agent, how an agent
react optimally against it ? 2) when there is a prediction failure how an agent can adapt his
opponent’s model ?. To give an answer to these questions it can be used some tools of the game
theory. The interaction between the observer and the target can be modelled as a repeated two-

player game where the goal of each agent is to compute interaction strategies that maximizes its
expected sum of rewards. This can be done efficiently under some assumptions about the kind

of strategies followed by the agents as well as about the type utility functions for the repeated
games. The first assumption is that each agent follows a regular strategy, i.c., a strategy that can

be represented by a deterministic finite automata [10] and [9]. This assumption is based on the

fact that in the case of having a live complete sample and a knowledgeable teacher that answers

membership queries posed by the learner, it can be obtained a incremental polynomial learning

DFA algorithm [9]. A second assumption is about the form of the utility functions,

i.e.discounted-sum and limit-of-the-means, because it has been proved in [1] based on the work

done in [8] that the best response strategy can be obtained efficiently given these common

utilities functions.

Definition 1. The tracking problem posed as a two-player-game is a tuple
G= <f° o U, ,u2>, where [, f", are the finite set of alternative moves for the

observer and the target and U, ,u, : f° x f* = R are utility functions that define

the utility joint move (q°,q') for the players (i.e. observer and target).

We propose that the tracking problem can be formulated as a sequence of encounters
between the observer robot and the target robot and that situation can be described as

a repeated game G , that is a repetition of G an indefinite number of times. At any
stage k of the game, the players decide their actions (gy,q;)€ f° % f e
simultaneously. A history (k) of G'is a finite sequence of joint moves chosen by
the observer and the tfarget until the current stage of the game.
h(k) = ((qg RS CIST R e ,qi_,)) denotes the history of movements of
each robot. The empty history is denoted by & . The set of finite histories is denoted

as H(G'). The strategies are functions from the set of histories of games to the set
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of robots actions or moves 0° : H(G') = f° and o' : H(G') = f' for the
observer and the target respectively. An infinite sequence of joint moves during a
repeated game G between the observer’s and the target’s strategies is denoted by
(0°,0") . The repeated game G played by o° and o' defines the history A (k)

as follows:

ga".d' (0) =8

g, k4D =g . ()0 (g,. . (k)),0" (8, (D))

Definition 2. Tracking as a two-player repeated-game over a stage game Gisa
tuple G' =<Z°,Z',U oLl ') where X°and X' are sets of strategies for the
observer and the target respectively and U°,U' :Z° xZ' — R are the utility

. o a7 . .
functions. U° defines the utility of the infinite sequence 840 o Jfor the observer and
U' for the target.

Definition 3. G:p, (o',U°) is called the optimal strategy for the observer w.r.t.
o' and utility U°, if Vo € Z°,[U°(o,,(0",U°),0')2U"(0,0")].
., ] {4 . .
Definition 4. T, (o°,U") is called the optimal strategy for the target w.r.t.

o’ andutiliy U', iff Vo e Z',[U'(o! ,(c°,U"),0°)2U"(0,0°)].

opt
In the present work are considered two common utility functions for each robot, the
first is the discount factor

Ug,(c’,0')=(1- 70)2 4 (-8 (gd,,‘a, (k)),o' (ga,‘a, (k))) for the observer

k=0
and respectively U}, (°,0') =(1- }/’)Z 7, (o' (8,0 (K)),0°(g,. . (K)))
k=0

for the target for 0 < 7° <1 and 0 <y’ <1, the second kind of utility function is
limit-of-the-means

o o ! 2 4 1 > o o !
L(oc%0")= ergmf;Zu (0°(g,. , (k),0'(g,. . (k)  for the

k=0

! 1
1 o 1\ _ L 3 ] ]
observer and U, (0°,0 )—H_I)l:lnfk;u (o (ga,,.d, (k),o'(g,. (k)))
for the target. So taking into account the repeated game formalism combined with
robot motion planning tracking problem formulation we can make for instance
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r_ =mi
u' = DWE}, min, {Dq‘/v" +D, i +Dv/ ; Eﬁ}and

w’ =L(x,7y )= 1,2[{ L% )= 1’1:'{' saupo L(x, ,}’,}’o)and replace them into the
y el

respective limited-of-the-means common utility functions then we can model the
tracking problem of the kind evader/pursuer as a two-player repeated game. As can
be seen the utility functions are more general and the evader/pursuer case is just an
instance of the possible behaviors, so with these theoretic game model we can deal

with more general behaviors depending on the utility functions #° ,u' chosen.

3.1 Learning the Target’s Automata

In this paper we assume that each robot is aware of the other robot actions, i.e.
1 .
2°,X are common knowledge while the preferences u°,u’are private. It is

assumed too that each robot keeps a model of the behavior of the other robot. The
strategy of each robot is adaptive in the sense that a robot modifies his model about
the other robot such that the first should look for the best response strategy w.r.t. its
utility function. Given that the search of optimal strategies in the strategy space is
very complex when the agents have bounded rationality it has been proved in [10] that
this task can be simplified if we assume that each agent follow a DFA strategy. In [8]
has been proven that given a DFA opponent model, there exist a best response DFA that can be
calculated in polynomial time. In the field of computational learning theory it has been proved
by E.MM. Gold [11] in that the problem of learning minimum state DFA equivalent to an
unknown target is NP-hard. Nevertheless D. Angluin has proposed in [3] a supervised learning
algorithm called /D which learns a target DFA given a live-complete sample and a
knowledgeable teacher to answer membership queries posed by the learner. Later Rajesh
Parekh, Codrin Nichitiu and Vasant Honavar proposed in [9] a polynomial time incremental
algorithm for learning DFA. That algorithm seems to us well adapted to the tracking problem
because the robots have to lean incrementally the strategy of the other taking as source of

examples the visibility information as well as the history about the actions performed by each
agent.

4 Conclusions and Future Work

As we have exposed in the present work, the one-observer-robot/one-target-robot tracking
problem can be formulated as a two-player game and enable us to analyse it in a more general
setting than the evader/pursuer case. The prediction of the farget movements can be done for
more general farget behaviours than the evasion one, endowing the agents with learning DFA’s
abilities. The next step will be to elaborate the associated algorithms and implement them in a
computer program. Another interesting issue is to apply the algorithms to the case of many
evaders and many pursuers.
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